
Who Tracks the Trackers? Circumventing Apple’s Anti-Tracking
Alerts in the Find My Network

Travis Mayberry
Ellis Fenske
Dane Brown

mayberry@usna.edu
fenske@usna.edu
dabrown@usna.edu
US Naval Academy

United States

Jeremy Martin
Christine Fossaceca
jbmartin@mitre.org
cfossaceca@mitre.org

MITRE
United States

Erik C. Rye
Sam Teplov
Lucas Foppe
rye@cmand.org

CMAND
United States

ABSTRACT
Apple’s Find My protocol allows lost devices, such as AirTags, to
relay their location to their owners via a network of over a billion
active Apple devices. This convenient feature for device owners
may also be a tool for malicious actors to cheaply and effectively
track unknowing targets. Apple has introduced a featured known
as “item safety alerts” to prevent AirTags from being used this way.
We demonstrate that it is possible to create a custom device, with
similar features to an AirTag in terms of cost, size, and battery
life, which can participate in and be tracked by Apple’s Find My
network while not triggering any item safety alerts. This implies
that Apple’s protection mechanism is insufficient. We suggest nat-
ural mitigations for two of our malicious tracker techniques but
note that the third would require substantially altering the Find My
protocol to defend against.

CCS CONCEPTS
• Hardware → Wireless devices; • Networks → Network pri-
vacy and anonymity.

KEYWORDS
tracking,privacy,apple,ble,airtags

ACM Reference Format:
Travis Mayberry, Ellis Fenske, Dane Brown, Jeremy Martin, Christine Fos-
saceca, Erik C. Rye, Sam Teplov, and Lucas Foppe. 2021. Who Tracks the
Trackers? Circumventing Apple’s Anti-Tracking Alerts in the Find My Net-
work. In Proceedings of the 20th Workshop on Privacy in the Electronic Society
(WPES ’21), November 15, 2021, Virtual Event, Republic of Korea. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3463676.3485616

1 INTRODUCTION
In 2019, Apple introduced a feature for their devices termed “Offline
Finding (OF)”. The goal of this feature is to allow users to locate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WPES ’21, November 15, 2021, Virtual Event, Republic of Korea.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8527-5/21/11. . . $15.00
https://doi.org/10.1145/3463676.3485616

their lost devices even when they are in a location where they do
not have internet access (outside of cellular reception, no nearby
trusted Wi-Fi networks, etc.). Before this feature was added, the
only way to locate a lost device was to have it “phone home” to
Apple over the internet, after which the user can login with their
iCloud account and check its location, have it play a sound, mark it
as “lost”, or remotely erase the device.

With OF, when a device loses internet connectivity it starts
to send advertising messages over Bluetooth Low Energy (BLE)
using Apple’s Continuity protocol, which is described in Martin
et al. [14]. Nearby Apple devices, (i.e, bystanders), will receive
these BLE messages and log the BLE advertisement data along
with the location (latitude/longitude coordinates) where the lost
device was observed. When a bystander device gains a connection
to the internet, it will forward the token and corresponding location
coordinates to Apple for the owner of the lost device to later retrieve
and locate their device.

This feature is very similar to what is already done by other man-
ufacturers of token tracking technology such as Tile[1], SmartTag[3],
and Chipolo[2]. In 2021 Apple released their own version of these
tokens, which they named “AirTags”, that participate in the same OF
protocol described above. At this time, they renamed the technol-
ogy from “Offline Finding” to “Find My,” to reflect that the network
would contain many types of devices and not just offline iPhones. In
contrast with Tile, the largest BLE tracking competitor with around
35 million devices in its finding network [10], Apple has over 1
billion iPhones currently in active use [12]. This makes it much
more likely that a bystander will have a compatible device to report
the location of a lost AirTag, compared to a lost Tile.

In designing AirTags, Apple attempted to mitigate potential
abuses of their technology. Since AirTags are very small, cheap, and
can be located without requiring any internet access, they would
be easy to surreptitiously place in someone’s backpack, purse, car,
etc. This could allow, for instance, a stalker, oppressive regime, or
criminals to track the location of a target without their knowledge
and without expending many resources. To prevent this, Apple has
included in iOS another feature called “item safety alert” where
an iPhone can identify that the same AirTag is following it from
location to location and thereby alert the user that they are being
tracked. The victim is then assisted in finding the tracking device
and disabling it. The iOS device can connect to the Airtag over
Bluetooth and cause it to beep loudly, and an iPhone 11 or newer

https://doi.org/10.1145/3463676.3485616
https://doi.org/10.1145/3463676.3485616

can use ultra wideband to point the user directly toward the Airtag
like a compass.

Popular media reports that this anti-tracking feature can be un-
reliable [7, 13]. Apple’s anti-tracking technology is only available
on iPhone devices (i.e., an Android user will not be able to detect
tracking), and in addition, alerts are not always shown to the user
in a reasonable amount of time. Tracking can go on for hours or
sometimes days without triggering an alert [7]. In this paper, we
present the first analysis of the item safety alert feature, experi-
mentally determining under what criteria these alerts are shown
to the user. We determine that alerts require an iPhone to see the
same AirTag several times, with the user being in multiple discrete
locations separated by a minimum distance.

We go on to show that it is cheap and easy to design a custom
device which participates in the OF network like an AirTag, and can
be located through Apple’s servers, but which will never trigger an
item safety alert and cannot be identified as a tracker by nearby iOS
devices. We show that this can be accomplished with three different
techniques. Two of these attacks can be discovered and mitigated
with potential software fixes to the item safety alert feature. Toward
that end, we have disclosed our findings to Apple in June of 2021.
However, we believe the third technique to be robust and difficult
to detect, even if the attack is known to be in use.

2 FIND MY PROTOCOL
Specifications for the Find My protocol were briefly released by
Apple in October 2020, but were quickly moved behind a portal
requiring viewers to enroll with Apple as a partnering device manu-
facturer [4]. There are currently no publicly available specifications
from Apple. Fortunately, Heinrich et al. [11] have also reverse en-
gineered the main portions of the protocol and [8, 14] have imple-
mented a Wireshark dissector to process Apple’s BLE Continuity
protocol frames. We update the dissector, providing additional Find
My protocol dissection support and contribute our work back to the
community. We reproduce the relevant details of Heinrich et al. [11]
for our work in this section. We focus on the protocol as it applies
to AirTags, since we are primarily investigating their behavior and
the behavior of other Apple devices around them, but most of the
details are the same for any lost device participating in the Find My
protocol.

We first introduce some terminology. We refer to the messages
sent by an AirTag in a lost state as lost messages. A third-party
Apple device participating in the Find My network is a bystander.
The reports that a bystander sends to Apple after receiving a lost
message from an AirTag, which include the latitude and longitude
of the lost device, are location reports.

2.1 Lost Messages
When an AirTag is first paired with an iCloud account, the AirTag
and another device previously enrolled with the iCloud account
(owner’s iPhone or iPad for instance) jointly create a Elliptic Curve
Diffie-Hellman (ECDH) public key on the curve P-224 P and two 256-
bit symmetric keys SKS and SKN. These keys are used to generate
rotating temporary public keys that the AirTag broadcasts in its
BLE messages while it is lost. The keys are known to the AirTag
as well as the iCloud user and are stored in their iCloud keychain.

Figure 1: Breakdown of the byte structure of a lost message
in the Separated state.

Byte Value Comment
MAC addr Public key Bytes 0-5 of PW𝑗

0 0x12 Payload Type
1 0x19 Length
2 Battery info, see discussion

3-24 Public key Bytes 6-27 of PW𝑗

25 Key overflow Bits 0-1 of byte 0 of PW𝑗

26 Byte 5 of P𝑖 Unknown purpose

Crucially, this key is not known to Apple and is cryptographically
sealed when stored in the iCloud keychain.

At any point in time, an AirTag can be in three possible states:
Connected,Nearby or Separated. An AirTag starts out in a Connected
state when it is initially paired. It remains in this state as long as
the device it was paired with is nearby and it can maintain a BLE
connection. If the AirTag ever loses the BLE connection with the
paired device, it transitions to the Nearby state.

In the Connected or Nearby state, the AirTag broadcasts a short
advertising message with a public key derived from SKN (Secret
Key Nearby) and the Master Public Key P. This key, and the BLE
MAC address used in the message, rotates every 15 minutes to
prevent adversarial tracking via a static identifier. In these states,
the BLE advertisement contains only a partial public key and nearby
bystanders will ignore these messages. In these states, the AirTag
is considered “not lost,” i.e., it is either directly connected via BLE
to its owner’s device or it has recently been in the Connected state.

After 15 minutes in the Nearby state, if the AirTag does not tran-
sition back to the Connected state it goes into the Separated state.
The AirTag now considers itself “lost”. This is the most interesting
state to us because as the AirTag now becomes active in the Find
My network and other devices will start to report the lost AirTag’s
location upon observation of the “lost” BLE advertisement frames.

From this point, the AirTag will broadcast the full BLE adver-
tising message that we refer to as a lost message. The structure of
these messages can be seen in Figure 1. In this state, it advertises an
ECDH public key PW𝑗 that is derived from SKS (Secret Key Sepa-
rated) and the Master Public Key P. This process is deterministic,
incrementing the key once for each rotation period.

Due to the size constraints of a BLE advertising message being
extremely limited, the structure of a lost message is very compact.
In order to send the entire 28 byte public key, the first 6 bytes of
PW𝑗 are encoded within the MAC address of the AirTag. Since this
address is randomized and local, it must have the least significant
bits of byte 0 of the MAC address set to 0b11. Because of this, the
corresponding two bits of PW𝑗 are sent instead in byte 25 of the
advertisement frame.

Byte 2 contains the battery status of the AirTag, encoded in bits
6 and 7. It can have values 0 − 3 for Full, Medium, Low and Very
Low, respectively. Importantly, this byte is also required by the spec
to have bit 5 set to 1. We will revisit this fact later.

Byte 26 is described in the specification as a “hint” byte. It is
set to byte 5 of the key P𝑖 (the Nearby State Key). The purpose
of this byte is not given. In our experiments we have determined

that setting it to arbitrary values, or always 0, has no effect on the
protocol.

Because none of the information in this message is identifying
(the public key is random), a bystander does not learn anything
about who owns the AirTag. Since the key rotates every 15 minutes
in Nearby state and every 24 hours in Separated state, it cannot be
tracked long-term by any identifiers in the message. This is also
why we can create our own devices that act as AirTags: since the
message only contains a random public key, and no authentication
information, it is trivial to forge these messages and have them
match the distribution of messages from a normal AirTag.

2.2 Location Reports
When a bystander device receives a lost message, it reconstructs the
ECDH public key, encrypts its own current location with that key
and sends it to Apple’s servers along with a hash of the public key.
We refer to this as the location report. An owner attempting to locate
the AirTag will then calculate the public keys the AirTag has used
over the past 7 days (the owner can do this because they have P and
SKS in their iCloud keychain), hashes them and sends them to the
Apple server to see if any location reports were submitted matching
those hash values. Note that there is no throttling or limiting on
the number of keys that a client can request from Apple’s servers;
it is possible to request hundreds or thousands of them in a few
seconds.

If a report is retrieved, the owner decrypts the report with their
corresponding private key, generated from SKS. Because SKS is
known only to the owner of the device, only the owner can correctly
decrypt these lost reports and obtain the location of the AirTag.
Even Apple cannot learn an AirTag’s location because SKS is never
sent to them and is stored in the iCloud keychain sealed by a key
that is stored in the Secure Enclave [5] of the owner’s device.

3 ITEM SAFETY ALERTS
Anticipating the potential for abuse of these low-cost AirTags as
malicious unwanted tracking devices, Apple has implemented anti-
tracking technology in iPhones which displays a warning upon
receiving consistent lost messages from the same AirTag over time.

We observed through experimentation that these tracking alerts
appear only when the AirTag is co-located with the device over a
period of time and also across a minimum distance (about a mile).
Upon release, these alerts were much less reliable, requiring several
hours to display (seen in our experiments and also reported in news
media [7]), but an update was deployed in June for iOS 15 beta that
lowered the amount of time to about 30 minutes [15]. An example
of an alert can be seen in Appendix A.

We attempted to determine more precisely what the criteria were
for a device to trigger an alert. We were able to observe iPhones
recording lost messages through the debug console log, which
shows that an AirTag beaconing over an long period of time will
eventually be flagged as “suspicious.” We have yet to determine the
exact mechanisms by which these messages were flagged as such.
We leave it to future work to determine this, potentially via reverse
engineering.

4 DEFEATING ALERTS
We identified, implemented, and tested three primary methods to
prevent item safety alerts. All were implemented on an Espruino
Puck.js [6], a small, low-cost, general-purpose computing platform
able to send BLE messages. The Puck is approximately the same
size as an AirTag and actually uses the same Bluetooth System
on a Chip (SoC) (nRF52832). We release each method as a fully
functional open-source implementation (link redacted), including
a Wireshark dissector (link redacted) to parse and verify Find My
BLE lost messages.

Rather than derive a key from information stored by the iCloud
account as described in the genuine Find My protocol, we generate
a random P-224 keypair and advertise it from our device as outlined
in Section 2.1. Since Apple’s Find My app only allows users to
retrieve location reports for legitimate Apple devices that have
undergone the pairing process, we instead use the OpenHaystack
client [16], an open-source project that allows querying Apple’s
Find My servers for arbitrary public keys.

However, OpenHaystack provides an additional advantage in
that it displays multiple location report positions over time. By
contrast, Apple’s Find My application depicts only the location
of the most recent location report. Appendix A contains several
maps generated by tracking our Espurino Puck devices. All tracking
experiments were performed by the authors of this paper using
our devices to track ourselves. No non-consensual tracking was
performed.

Tests were run on various devices, including iPhones 7, 8 and 12
and iPad Pro (4th Gen). Behavior was tested and confirmed to be
identical on iOS 14.5 (the first version to support Airtags), 14.5.1
and 14.6.

4.1 Approach 1: Bit Flipping
As we observed in Section 2.1, bits 5, 6, and 7 of byte 2 in a lost
message contain battery information. Crucially, while AirTags set
bit 5 to 1, iPhones can also report themselves as lost, in which
case they generate lost messages as well, but with byte 2 set to
0x00. iPhones do not consider lost iPhones to be potential tracking
devices, presumably because they are expensive with a relatively
short battery life. This means we can simply configure our devices
to send lost messages using the iPhone format (with bit 5 set to 0)
rather than the AirTag format, in which case they do not produce
item safety alerts.

Mitigation: We reported this vulnerability to Apple and expect
mitigation against this technique to be trivial and very effective;
item safety alerts can simply be generated even if a lost iPhone (or
adversary device posing as an iPhone) is used as a tracking device.

4.2 Approach 2: Rotating Keys
While separated-state AirTags use the same lost message over a
long period of time, we face no such limitation with our custom
advertising devices. Instead, we found that we could simply rotate
the advertised public key regularly over time, and then query all
keys on our fixed rotation schedule to recover all relevant location
reports for our devices, presenting an effective tracking technique.
We observed that simply rotating keys can still trigger item safety
alerts if the number of keys is small, but if many keys are used

Keys (n) Rotation time (s) Repeat time (r) Alert?
5 900 4500 Yes
15 900 13500 Yes
25 20 500 Yes
50 900 45000 No
100 20 2000 No
100 900 90000 No

Table 1: Key Rotation Experiments

the devices can be used for tracking purposes indefinitely without
triggering alerts. We performed a series of experiments with our
devices, each time carrying the device for many hours across long
distances (for experiments withmany keys, we carried these devices
for weeks across thousands of miles as depicted in Appendix A.
Each time, we programmed the device to send lost messages on a 𝑛-
key rotation, sending an advertisingmessage every two seconds and
rotating keys every 𝑠 seconds, so that the first key used by the device
is re-used after 𝑟 = 𝑛𝑠 seconds, with our results presented in Table
1. From our results, we suspect the primary factor in preventing the
alerts is number of keys, rather than time between repeated keys,
and that a rotation cycle with length between 25 − 50 is currently
sufficient to prevent the alerts.

Mitigation: This technique only works because the item safety
alerts are not recognizing repeated keys as tracking threats if they
occur too far apart or with too many other lost devices seen in
the meantime. The algorithm could be tuned to recognize repeated
keys more aggressively. The Puck can only store a limited number
of keys due to memory constraints (slightly more than 100 with our
implementation) so with proper parameters the item safety alerts
could certainly recognize our tracker.

4.3 Approach 3: Generating Keys on the Puck
Since memory is limited (the Puck can only store about 100 KB of
data) if we want to avoid repeating keys the next logical step is to
organically generate keys on the Puck. This is more difficult than it
may sound, due to the limited hardware resources available. The
Puck normally runs javascript code as its input, but our implemen-
tations of Elliptic Curve operations using the on-board Javascript
interpreter were too slow to be practical (30 minutes to calculate
one public key). For our implementation, we ultimately built a cus-
tom version of the Espruino firmware which included versions of
the Elliptic Curve functions from OpenSSL. This firmware had to
be hand-tuned to fit into the flash memory of the Puck.

We were then able to create a javascript program that could run
on the Puck which creates ECDH public keys deterministically from
an initial seed. Each key is calculated as SHA256(𝑠𝑒𝑒𝑑 + 𝑐𝑜𝑢𝑛𝑡𝑒𝑟),
where 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 starts at 0 when the Puck is initialized and incre-
ments every 15 minutes when the key rotates. This ensures that a
key is never repeated, making detection of the tracker more difficult.

Mitigation: We considered a few approaches to mitigation in
this case. First, devices could detect when they consistently observe
lost messages near them, even if they do not use the same key. How-
ever, this presents a problem: in dense areas it is not unreasonable
to expect lost devices to be present in many locations, and it would
not take many false positives for these alerts to become an irritant
rather than a helpful resource to users.

Moreover, the strategy of the malicious tracker could easily be
adjusted to hide from this type of detection by only broadcasting
lost messages for short periods and then going inactive for some
time. It would reduce the granularity of location reports slightly in
exchange for being much harder to detect. The Puck even has an
on-board accelerometer, so a more sophisticated tracker program
could stay inactive until it detects movement.

Second, the messages could include some kind of authentication
so that they cannot be trivially forged. To preserve the anonymity
properties of the Find My protocol, this would require an anony-
mous authentication protocol to allow devices to ignore lost mes-
sageswhich do not come from a legitimate AirTag. In our estimation,
such an approach would require a significant redesign of the devices
so that they contain forgery-resistant credentials, and the protocol
itself, since the advertising message does not contain additional
space that could be used for authentication information; the public
keys are already large enough that they do not fit in the message
payload itself, so must be partially contained within the advertising
MAC address of the messages.

Finally, Apple may be able to limit queries for location reports.
If we were not able to use OpenHaystack to query for arbitrary
public keys, our trackers would not work as we have described
them here. Apple could limit queries cryptographically, potentially
restricting access to their servers to the first-party Find My App
through use of the Secure Enclave. However, this would prevent any
device without a Secure Enclave from using the service. Even this
is not a complete solution because an attacker could still attempt to
retrieve the master key from an Airtag (it does not have any secure
hardware) and derive keys from that which would be trackable
using the Find My App. Researchers have been able to connect to
the debug pins of the microcontroller and retrieve the contents of
the flash memory [9], making this approach likely feasible.

5 CONCLUSION
Apple’s Find My network has orders of magnitudes more devices
participating in it than its nearest competitors. This makes it an
extremely powerful tool for cheaply and accurately locating lost
devices such as AirTags. Apple has worked extensively to prevent
their AirTags from being used maliciously as covert tracking de-
vices, implementing “item safety alerts” into iOS to warn users if
they are being tracked by an AirTag.

However, we have shown that Apple’s threat model for anti-
tracking is dangerously incomplete. In their efforts to make the
protocol privacy-protecting for AirTag owners, they make it possi-
ble for third-party devices to participate in the network due to a
lack of authentication of lost devices. We have demonstrated that
it is possible to create a device with approximately the same size,
cost, and battery-life of an AirTag which can be tracked using the
Find My network while also running custom code.

We have presented three strategies that a malicious tracker can
use to avoid detection by item safety alerts. Two of these strategies
can be fixed with simple software updates to iOS, but the third
seems to require substantial redesigning of the Find My protocol.
We have released our tracker software and analytical tools to the
public as open source implementations, including custom Espruino
firmware and Wireshark dissector.

REFERENCES
[1] [n.d.]. Find Your Keys, Wallet & Phone with Tile’s App and Bluetooth Tracker

Device. https://www.thetileapp.com/
[2] [n.d.]. Find your keys, wallet or anything you don’t want to lose. https:

//chipolo.net/en-us/
[3] [n.d.]. Use the Samsung Galaxy SmartTag and SmartTag+. https://www.samsung.

com/us/support/answer/ANS00088244/
[4] 2021. Create Innovative Accessories. https://mfi.apple.com/
[5] 2021. Keychain data protection. https://support.apple.com/guide/security/

keychain-data-protection-secb0694df1a/web
[6] 2021. Puck.js. https://www.espruino.com/Puck.js
[7] Geoffrey A. Fowler. 2021. Apple’s AirTag trackers made it frighteningly easy to

‘stalk’ me in a test. Washington Post (May 2021). https://www.washingtonpost.
com/technology/2021/05/05/apple-airtags-stalking/

[8] furiousMAC. [n.d.]. furiousMAC/continuity: Apple Continuity Protocol Reverse
Engineering and Dissector. https://github.com/furiousMAC/continuity

[9] Ghidraninja. 2021. Yesss!!! After hours of trying (and bricking 2 AirTags) I
managed to break into the microcontroller of the AirTag! /cc @colinoflynn
@LennertWo pic.twitter.com/zGALc2S2Ph. https://mobile.twitter.com/
ghidraninja/status/1391148503196438529?s=20

[10] Todd Haselton. 2021. Here’s how Apple’s AirTag trackers compare to Tile, and
why the company is so upset with Apple. https://www.cnbc.com/2021/04/27/
apple-airtags-versus-tile-tracker-how-they-compare.html

[11] Alexander Heinrich, Milan Stute, Tim Kornhuber, and Matthias Hollick. 2021.
Who Can Find My Devices? Security and Privacy of Apple’s Crowd-Sourced Blue-
tooth Location Tracking System. Proceedings on Privacy Enhancing Technologies
3 (2021), 227–245.

[12] Jacob Kastrenakes. 2021. Apple says there are now over 1 billion active
iPhones. https://www.theverge.com/2021/1/27/22253162/iphone-users-total-
number-billion-apple-tim-cook-q1-2021

[13] John Koetsier. 2021. How To Track People With Apple AirTags.
https://www.forbes.com/sites/johnkoetsier/2021/04/22/how-to-track-people-
with-apple-airtags/?sh=3565bf6269df

[14] Jeremy Martin, Douglas Alpuche, Kristina Bodeman, Lamont Brown, Ellis Fenske,
Lucas Foppe, Travis Mayberry, Erik C Rye, Brandon Sipes, and Sam Teplov. 2019.
Handoff All Your Privacy: A Review of Apple’s Bluetooth Low Energy Continuity
Protocol. arXiv preprint arXiv:1904.10600 (2019).

[15] Philip Michaels. 2021. Apple updates AirTag to fix its biggest flaws. https:
//www.tomsguide.com/news/apple-updates-airtag-to-fix-its-biggest-flaws

[16] Seemoo-Lab. 2021. OpenHaystack. https://github.com/seemoo-lab/openhaystack

https://www.thetileapp.com/
https://chipolo.net/en-us/
https://chipolo.net/en-us/
https://www.samsung.com/us/support/answer/ANS00088244/
https://www.samsung.com/us/support/answer/ANS00088244/
https://mfi.apple.com/
https://support.apple.com/guide/security/keychain-data-protection-secb0694df1a/web
https://support.apple.com/guide/security/keychain-data-protection-secb0694df1a/web
https://www.espruino.com/Puck.js
https://www.washingtonpost.com/technology/2021/05/05/apple-airtags-stalking/
https://www.washingtonpost.com/technology/2021/05/05/apple-airtags-stalking/
https://github.com/furiousMAC/continuity
https://mobile.twitter.com/ghidraninja/status/1391148503196438529?s=20
https://mobile.twitter.com/ghidraninja/status/1391148503196438529?s=20
https://www.cnbc.com/2021/04/27/apple-airtags-versus-tile-tracker-how-they-compare.html
https://www.cnbc.com/2021/04/27/apple-airtags-versus-tile-tracker-how-they-compare.html
https://www.theverge.com/2021/1/27/22253162/iphone-users-total-number-billion-apple-tim-cook-q1-2021
https://www.theverge.com/2021/1/27/22253162/iphone-users-total-number-billion-apple-tim-cook-q1-2021
https://www.forbes.com/sites/johnkoetsier/2021/04/22/how-to-track-people-with-apple-airtags/?sh=3565bf6269df
https://www.forbes.com/sites/johnkoetsier/2021/04/22/how-to-track-people-with-apple-airtags/?sh=3565bf6269df
https://www.tomsguide.com/news/apple-updates-airtag-to-fix-its-biggest-flaws
https://www.tomsguide.com/news/apple-updates-airtag-to-fix-its-biggest-flaws
https://github.com/seemoo-lab/openhaystack

A EXAMPLE IMAGES
All of the following example images and location histories were generated in the course of experiments performed by members of our
research group, and were created and are reproduced here for publication with consent and foreknowledge of the participants.

Figure 2: Traveling across the US. Note increased density of reports in urban/suburban areas from more bystanders.

Figure 3: The item safety alert screen.

Figure 4: Tracking in a small urban area.

Figure 5: Tracking over a longer distance.

	Abstract
	1 Introduction
	2 Find My Protocol
	2.1 Lost Messages
	2.2 Location Reports

	3 Item Safety Alerts
	4 Defeating Alerts
	4.1 Approach 1: Bit Flipping
	4.2 Approach 2: Rotating Keys
	4.3 Approach 3: Generating Keys on the Puck

	5 Conclusion
	References
	A Example Images

